3.91 \(\int \frac{x^3}{\sqrt{\cosh ^{-1}(a x)}} \, dx\)

Optimal. Leaf size=109 \[ -\frac{\sqrt{\pi } \text{Erf}\left (2 \sqrt{\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac{\sqrt{\frac{\pi }{2}} \text{Erf}\left (\sqrt{2} \sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4}+\frac{\sqrt{\pi } \text{Erfi}\left (2 \sqrt{\cosh ^{-1}(a x)}\right )}{32 a^4}+\frac{\sqrt{\frac{\pi }{2}} \text{Erfi}\left (\sqrt{2} \sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4} \]

[Out]

-(Sqrt[Pi]*Erf[2*Sqrt[ArcCosh[a*x]]])/(32*a^4) - (Sqrt[Pi/2]*Erf[Sqrt[2]*Sqrt[ArcCosh[a*x]]])/(8*a^4) + (Sqrt[
Pi]*Erfi[2*Sqrt[ArcCosh[a*x]]])/(32*a^4) + (Sqrt[Pi/2]*Erfi[Sqrt[2]*Sqrt[ArcCosh[a*x]]])/(8*a^4)

________________________________________________________________________________________

Rubi [A]  time = 0.146045, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 6, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5670, 5448, 3308, 2180, 2204, 2205} \[ -\frac{\sqrt{\pi } \text{Erf}\left (2 \sqrt{\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac{\sqrt{\frac{\pi }{2}} \text{Erf}\left (\sqrt{2} \sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4}+\frac{\sqrt{\pi } \text{Erfi}\left (2 \sqrt{\cosh ^{-1}(a x)}\right )}{32 a^4}+\frac{\sqrt{\frac{\pi }{2}} \text{Erfi}\left (\sqrt{2} \sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4} \]

Antiderivative was successfully verified.

[In]

Int[x^3/Sqrt[ArcCosh[a*x]],x]

[Out]

-(Sqrt[Pi]*Erf[2*Sqrt[ArcCosh[a*x]]])/(32*a^4) - (Sqrt[Pi/2]*Erf[Sqrt[2]*Sqrt[ArcCosh[a*x]]])/(8*a^4) + (Sqrt[
Pi]*Erfi[2*Sqrt[ArcCosh[a*x]]])/(32*a^4) + (Sqrt[Pi/2]*Erfi[Sqrt[2]*Sqrt[ArcCosh[a*x]]])/(8*a^4)

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{\cosh ^{-1}(a x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cosh ^3(x) \sinh (x)}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{a^4}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{\sinh (2 x)}{4 \sqrt{x}}+\frac{\sinh (4 x)}{8 \sqrt{x}}\right ) \, dx,x,\cosh ^{-1}(a x)\right )}{a^4}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sinh (4 x)}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{8 a^4}+\frac{\operatorname{Subst}\left (\int \frac{\sinh (2 x)}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{4 a^4}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{e^{-4 x}}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{16 a^4}+\frac{\operatorname{Subst}\left (\int \frac{e^{4 x}}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{16 a^4}-\frac{\operatorname{Subst}\left (\int \frac{e^{-2 x}}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{8 a^4}+\frac{\operatorname{Subst}\left (\int \frac{e^{2 x}}{\sqrt{x}} \, dx,x,\cosh ^{-1}(a x)\right )}{8 a^4}\\ &=-\frac{\operatorname{Subst}\left (\int e^{-4 x^2} \, dx,x,\sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4}+\frac{\operatorname{Subst}\left (\int e^{4 x^2} \, dx,x,\sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4}-\frac{\operatorname{Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt{\cosh ^{-1}(a x)}\right )}{4 a^4}+\frac{\operatorname{Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt{\cosh ^{-1}(a x)}\right )}{4 a^4}\\ &=-\frac{\sqrt{\pi } \text{erf}\left (2 \sqrt{\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac{\sqrt{\frac{\pi }{2}} \text{erf}\left (\sqrt{2} \sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4}+\frac{\sqrt{\pi } \text{erfi}\left (2 \sqrt{\cosh ^{-1}(a x)}\right )}{32 a^4}+\frac{\sqrt{\frac{\pi }{2}} \text{erfi}\left (\sqrt{2} \sqrt{\cosh ^{-1}(a x)}\right )}{8 a^4}\\ \end{align*}

Mathematica [A]  time = 0.0858704, size = 101, normalized size = 0.93 \[ \frac{\sqrt{-\cosh ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-4 \cosh ^{-1}(a x)\right )+2 \sqrt{2} \sqrt{-\cosh ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-2 \cosh ^{-1}(a x)\right )+\sqrt{\cosh ^{-1}(a x)} \left (2 \sqrt{2} \text{Gamma}\left (\frac{1}{2},2 \cosh ^{-1}(a x)\right )+\text{Gamma}\left (\frac{1}{2},4 \cosh ^{-1}(a x)\right )\right )}{32 a^4 \sqrt{\cosh ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/Sqrt[ArcCosh[a*x]],x]

[Out]

(Sqrt[-ArcCosh[a*x]]*Gamma[1/2, -4*ArcCosh[a*x]] + 2*Sqrt[2]*Sqrt[-ArcCosh[a*x]]*Gamma[1/2, -2*ArcCosh[a*x]] +
 Sqrt[ArcCosh[a*x]]*(2*Sqrt[2]*Gamma[1/2, 2*ArcCosh[a*x]] + Gamma[1/2, 4*ArcCosh[a*x]]))/(32*a^4*Sqrt[ArcCosh[
a*x]])

________________________________________________________________________________________

Maple [F]  time = 0.113, size = 0, normalized size = 0. \begin{align*} \int{{x}^{3}{\frac{1}{\sqrt{{\rm arccosh} \left (ax\right )}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/arccosh(a*x)^(1/2),x)

[Out]

int(x^3/arccosh(a*x)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{\operatorname{arcosh}\left (a x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/arccosh(a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/sqrt(arccosh(a*x)), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/arccosh(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{\operatorname{acosh}{\left (a x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/acosh(a*x)**(1/2),x)

[Out]

Integral(x**3/sqrt(acosh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/arccosh(a*x)^(1/2),x, algorithm="giac")

[Out]

sage0*x